Showing posts with label sources. Show all posts
Showing posts with label sources. Show all posts

Saturday, November 2, 2013

Locating sources of the world's highest methane levels


Above image shows IASI methane readings end October 2013 on the Northern Hemisphere. Clearly, high methane levels are very prominent over the Arctic. Over this period, the following peak methane readings have been recorded:
- October 28 - 2369 ppb
- October 29 - 2303 ppb
- October 30 - 2480 ppb
- October 31 - 2332 ppb

[ click on image to enlarge ]
Above image shows methane readings of 1950 ppb and higher in yellow, but only on October 31, 2013, pm.

This image is easier to analyze, since there are only a few areas where high methane readings show up, such as:
  • Last but not least, there's a huge area with high methane readings over the Arctic Ocean.
The image below again shows methane readings of 1950 ppb and higher in yellow on October 31, 2013, pm, but this time only for 3 altitudes, i.e. 451 mb, 469 mb and 487 mb. These levels were selected for their proximity to the altitude of 469 mb, where typically the highest mean global methane levels are recorded, i.e. from 1809 ppb to 1812 ppb for the period from October 28 to 31, 2013. Not surprisingly, the image below looks much the same as above image.



Things look rather different, though, when 3 altitudes are selected closer to sea level. The image below again shows methane readings of 1950 ppb and higher in yellow on October 31, 2013, pm, but this time only at 718 mb, 742 mb and 766 mb. These altitudes showed the highest methane readings that day, of 2322 ppb, 2332 ppb and 2316 ppb, respectively.


Ominously, high methane readings at these lower altitudes show up mostly in the Laptev Sea. In conclusion, some of the world's highest methane levels show up over the Laptev Sea, a huge area most prone to abrupt release of huge amounts of methane from the seabed.

This is further evidence in support of the looming threat of Abrupt Climate Change leading to extinction of many if not all species (i.e. including humans) within decades. It disproves the efforts of the IPCC, as discussed in the post Just do NOT tell them the monster exists, and further organizations to downplay the threat by spreading myths.

Saturday, June 23, 2012

How much methane is located in the Arctic?

Arctic sources of carbon have been studied by a team of researchers at Lawrence Livermore National Laboratory, Livermore, California, United States, led by Joshuah Stolaroff. Their estimates are illustrated in the image below, showing the potential total release, next to their characteristic annual release of methane and the geographic extent for each source.
Stolaroff et al., 2012, DOI: 10.1021/es204686w 
Note: Numbers in brackets behind the figures in above table relate to references below. If you cannot view these references, click here


For comparison, the NOAA image below shows the world's carbon dioxide emissions for each year in PgC (i.e. GtC or billions of tonnes of carbon).

Annual total emissions. The bars in this figure represent carbon dioxide emissions for each year in PgC yr-1 from the specified region. The final bar, labeled 'Mean', represents the 2001-2010 average. CarbonTracker models four types of surface-to-amosphere exchange of CO2, each of which is shown in a different color: fossil fuel emissions (tan), terrestrial biosphere flux excluding fires (green), direct emissions from fires (red), and air-sea gas exchange (blue). Negative emissions indicate that the flux removes CO2 from the atmosphere, and such sinks have bars that extend below zero. The net surface exchange, computed as the sum of these four components, is shown as a thick black line. 

Clearly, if merely a fraction of the sources at the top would end up in the atmosphere, we'd be in big trouble. Some of the carbon may be released gradually in the form of carbon dioxide, but it's much worse if large amounts of methane escape abruptly into the atmosphere, given factors such as methane's high Global Warming Potential. Anyway, it should be clear that the huge size of some of these sources poses a terrifying threat.  




References
  1. Boucher, O.; Folberth, G. A. New Directions: Atmospheric methane removal as a way to mitigate climate change? Atmospheric Environment 201044, 3343 – 3345.
  2. Solomon, S. et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.
    http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm
  3. Reagan, T. M.; Moridis, J. G.; Elliot, M. S.; Maltrud, M.; Cameron-Smith, P. Basin-scale assessment of gas hydrate dissociation in response to climate change. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011.
    http://adsabs.harvard.edu/abs/2010AGUFMOS43B..08R
     
  4. Mahmoudkhani, M.; Heidel, K.; Ferreira, J.; Keith, D.; Cherry, R. Low energy packed tower and caustic recovery for direct capture of CO2 from air. Energy Procedia 20091, 1535.
  5. Heidel, K.; Holmes, G.; Singh, A.; D. Keith, D. Process Costing of A Contactor for Air Capture. 10th International Conference on Greenhouse Gas Control Technologies, Amsterdam2010.
    http://keith.seas.harvard.edu/Misc/Process simulation of direct CO2 capture from air.pdf
  6. Stolaroff, J. K.; Keith, D. W.; Lowry, G. V. Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray. Environmental Science & Technology 200842, 2728–2735, PMID: 18497115.
    http://pubs.acs.org/doi/abs/10.1021/es702607w
  7. Trenberth, K. E.; Smith, L. The Mass of the Atmosphere: A Constraint on Global Analyses. J. Climate 2005, 18, 864–875.
    http://journals.ametsoc.org/doi/abs/10.1175/JCLI-3299.1
  8. Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics; John Wiley and Sons: New York, 1998.
  9. Massman, W. J. A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment 1998321111–1127.
  10. Maslin, M.; Owen, M.; Betts, R.; Day, S.; Dunkley Jones, T.; Ridgwell, A. Gas hydrates: past and future geohazard? Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2010, 368, 2369–2393.
    http://rsta.royalsocietypublishing.org/content/368/1919/2369.abstract
     
  11. Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research-Oceans 2010115, C08007.
    http://www.agu.org/pubs/crossref/2010/2009JC005602.shtml
  12. Shakhova, N.; Semiletov, I.; Panteleev, G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters 2005, 32, L09601.
    http://www.agu.org/pubs/crossref/2005/2005GL022751.shtml
  13. Shakhova, N. E.; Sergienko, V. I.; Semiletov, I. P. The contribution of the East Siberian shelf to the modern methane cycle. Herald of the Russian Academy of Sciences 200979, 237–246.
    http://www.springerlink.com/content/3mx32n6n5w4033w8/
  14. Zimov, S. A.; Schuur, E. A. G.; Chapin III, F. S. Permafrost and the Global Carbon Budget. Science 2006312, 1612–1613.
    http://www.sciencemag.org/content/312/5780/1612.summary
  15. Anisimov, O. A. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters 2007, 2, 045016. http://iopscience.iop.org/1748-9326/2/4/045016 
  16. Repo, M. E.; Huttunen, J. T.; Naumov, A. V.; Chichulin, A. V.; Lapshina, E. D.; Bleuten, W.; Martikainen, P. J. Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus Series B-Chemical and Physical Meteorology 200759, 788–796.
    http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0889.2007.00301.x/abstract
  17. Walter, K. M.; Smith, L. C.; Chapin, F. S. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society A 2007365, 1657–1676.
    http://rsta.royalsocietypublishing.org/content/365/1856/1657
  18. MacDonald, G. M.; Beilman, D. W.; Kremenetski, K. V.; Sheng, Y.; Smith, L. C.;
    Velichko, A. A. Rapid early development of circumarctic peatlands and atmospheric CH(4) and CO(2) variations. Science 2006, 314, 285–288.
    http://www.sciencemag.org/content/314/5797/285.short